Decades Old Mystery of Buckyballs Cracked

After exploring for 25-years, scientists have solved the question of how the iconic family of caged-carbon molecules known as buckyballs form.

The results from the Florida State University and the National Science Foundation-supported National High Magnetic Field Laboratory, or MagLab, in Tallahassee, Fla., shed fundamental light on the self-assembly of carbon networks. The findings should have important implications for carbon nanotechnology and provide insight into the origin of space fullerenes, which are found throughout the Universe.

Many people know the buckyball, also know as fullerene by scientists, molecule, C60, from the covers of their school chemistry books. Indeed, the molecule represents the iconic image of “chemistry.” But how these often highly symmetric, beautiful molecules with extremely fascinating properties form in the first place has been a mystery. Despite worldwide investigation since the 1985 discovery of C60, fullerene has kept its secrets. How? It’s born under highly energetic conditions and grows ultra fast.

“The difficulty with fullerene formation is that the process is literally over in a flash – it’s next to impossible to see how the magic trick of their growth was performed,” says Paul Dunk, lead author of the work.

In the study, published in Nature Communications at the end of May, the scientists describe their ingenious approach to testing how fullerenes grow. “We started with a paste of pre-existing fullerene molecules mixed with carbon and helium, shot it with a laser, and instead of destroying the fullerenes we were surprised to find they’d actually grown.” The fullerenes were able to absorb and incorporate carbon from the surrounding gas.

The buckyball research results will be important for understanding fullerene formation in extraterrestrial environments. Recent reports by NASA showed that crystals of C60 are in orbit around distant suns. This suggests that fullerenes may be more common in the Universe than we thought.

“The results of our study will surely be extremely valuable in deciphering fullerene formation in extraterrestrial environments,” said FSU’s Harry Kroto, a Nobel Prize winner for the discovery of C60 and co-author of the current study.

Full Article

(via scinerds)

  1. praytothebeat reblogged this from afro-dominicano
  2. herestoyoumsholly reblogged this from physicsphysics
  3. rlfrules reblogged this from physicsphysics
  4. bradelator reblogged this from afro-dominicano
  5. celticheavens reblogged this from physicsphysics
  6. aintnojuiceman reblogged this from physicsphysics and added:
  7. anengineersaspect reblogged this from scinerds
  8. ciudadesilusorias reblogged this from thescienceofreality
  9. malphalent reblogged this from afro-dominicano
  10. youngfulsoul reblogged this from matthewvonhumboldt
  11. vihu reblogged this from physicsphysics
  12. nevertheh3ro reblogged this from afro-dominicano
  13. fractalmind reblogged this from exogenerian
  14. exogenerian reblogged this from afro-dominicano
  15. ms-live-b4-udie reblogged this from afro-dominicano
  16. idrewyouasquirrelbecauseiloveyou reblogged this from scinerds
  17. pulpless-fiction reblogged this from afro-dominicano
  18. thehecticglowcloud reblogged this from physicsphysics
  19. snarkiplier reblogged this from afro-dominicano
  20. serpencexalloid reblogged this from afro-dominicano
  21. rvstintheoil reblogged this from physicsphysics
  22. n0cturnalnicole reblogged this from afro-dominicano
  23. too-much-midi reblogged this from probablyhuman
  24. vilmostest reblogged this from afro-dominicano
  25. puckishsquint reblogged this from afro-dominicano
  26. hyperspacefirefly reblogged this from physicsphysics
  27. probablyhuman reblogged this from scinerds
  28. amyanderson reblogged this from afro-dominicano
  29. hupla66 reblogged this from reafan
  30. rawrthelord reblogged this from afro-dominicano